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Abstract

Firm leverage has been documented to be a slow-moving, persistent variable,
even after controlling for leverage determinants. I show that if a firm’s leverage
dynamics are driven by a persistent explanatory variable that is measured with
error, the mismeasured explanatory variable creates leverage persistence in a
Lemmon et al. portfolio sort framework. In regression residual-sorted portfolios, a
large positive residual will forecast above average future leverage. If a single factor
drives leverage (we can think of this factor as a composite of many tradeoff theory-
based explanatory variables), then the measurement error variance of this single
“composite” variable needs to be 42% larger than its cross-sectional variance to
reproduce the stylized facts of portfolio leverage persistence. Even small levels
of measurement error produce a remarkable level of persistence in residual-based
portfolio sorts. Furthermore, low quantities of measurement error in profitability,
tangibility, and industry leverage, coupled with a measurement error variance
equal to about 80% of the cross-sectional variation in the market to book ratio,
produce a good fit of simulated sample data moments to empirical moments. This
suggests that unobserved investment opportunities may play an important role

in explaining leverage ratios.
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1 Introduction and Background

Financial leverage, the ratio of a firm’s debt to its assets, is generally accepted to be a
slow-moving variable?. Adding to the literature on leverage persistence, Lemmon et al.
(2008) document that when firms are sorted into portfolios based on their leverage, the
average leverage levels of these portfolios do not converge to the unconditional mean
even after 20 years. Furthermore, the authors show that this phenomenon persists
even after controlling for factors that are believed to drive leverage: When firms are
sorted into portfolios on the basis of residuals from a regression of leverage on various
determinants motivated by the tradeoff theory of capital structure, and then tracked
for 20 years post portfolio formation, the mean leverage levels of these portfolios still
exhibit long-term persistence and slow convergence over time. In addition, Lemmon
et al. (2008) find that a firm fixed effect is the variable that explains most of the initial
cross-sectional variation and subsequent slow convergence. In this paper, I seek an
explanation for this apparent firm fixed effect in the context of the Lemmon et al.
(2008) portfolio sorts. My findings suggest that the apparent slow convergence of
leverage towards an unconditional mean after controlling for determinants of leverage
need not necessarily be taken as evidence against firms having a time-varying leverage
target.

I focus on measurement error in empirical proxies of the true underlying economic
variables as a culprit of the phenomenon. If leverage is governed by a persistent ex-
planatory variable that is measured with error, using the mismeasured explanatory
variable in a regression is problematic. It creates persistence in residual-sorted portfo-
lios in the following manner: conditional on an observed residual, future expectations of
leverage are no longer equal to the unconditional mean. Instead, a large positive resid-
ual will forecast above average future leverage. This is because the estimated residual
is correlated with the true unobservable explanatory variable, which in turn predicts
leverage.

It is reasonable to assume that the proxies used in capital structure analysis are
tainted with measurement error. Consider asset tangibility, for instance. Under the
tradeoff theory of capital structure, the more tangible a firm’s collateral is, the more
debt it will take on to take advantage of the interest tax shield, ceteris paribus. However,
using a proxy like property, plant and equipment normalized by assets is an imperfect
measure of true tangibility. For instance, let’s compare a construction company and an

airplane manufacturer with similar amounts of tangible assets, as defined by the afore-

2For example, when modeled as an AR(1) process, the estimated autocorrelation coefficient for the

leverage ratio tends to be around 0.9.



mentioned ratio. In bankruptcy the construction company’s cranes and excavators are
easily transferable to another construction company, while the tooling used to assemble
a Boeing 777 would be of questionable use in the assembly of an Airbus A-330, and
thus less valuable. The empirical proxy, here given by the tangibility measure, will not
always properly reflect the true underlying economic determinant.

I also obtain an estimate of the amount of measurement error consistent with the
stylized facts. I find that if we assume that a single factor drives leverage (we can think
of this factor as a composite of many tradeoff theory-based explanatory variables),
then the measurement error variance of this single “composite” variable needs to be
42% larger than its cross-sectional variance to reproduce the Lemmon et al. (2008)
findings. While this seems large, even smaller levels of measurement error produce
a remarkable level of persistence in residual-based portfolio sorts. For instance, if
the ratio of measurement error to state noise in the explanatory variable is as low as
25%, the residual-based portfolios nonetheless exhibit a sizeable amount of persistence.
Therefore, measurement error is likely to be an important contributor to the persistence
in residual-sorted leverage portfolios, even if one takes the view that it is not the sole
cause.

Finally, I examine measurement error in several explanatory variables consistent
with studies such as Lemmon et al. (2008), Rajan and Zingales (1995) and Frank and
Goyal (2009). By matching simulated data moments to empirical moments, I find that
low quantities of measurement error in profitability, tangibility, and industry leverage,
coupled with a measurement variance equal to about 80% of the cross-sectional variation
in the market to book ratio, reproduce the stylized facts. This finding is consistent with
other studies such as Erickson and Whited (2006), who document that a large amount
of the variability in the market-to-book ratio can be attributed to measurement error,
and not true Tobin’s q. My finding suggests that unobserved investment opportunities

may play an important role in explaining leverage ratios.

Related Literature

Myers (1984) remarked that “we do not know how firms choose the debt, equity or hy-
brid securities they issue.” Since then, much effort has gone into better understanding
corporate capital structure, yet the question of whether firms do have a target capital
structure towards which they adjust their debt/equity mix is open. Titman and Wes-
sels (1988) find several variables that help predict a firm’s capital structure, yet the
variables do not correspond to any one theory. Fischer et al. (1989) propose a dynamic

capital structure model, where firms adjust towards an optimum, but are hampered by



adjustment costs. Hovakimian et al. (2001) provide evidence that firms behave in a
fashion consistent with a tradeoff model, a finding that is echoed in Leary and Roberts
(2005). Roberts (2001) shows that firms appear to adjust towards firm-specific time-
varying targets, that adjustment speeds vary considerably across industries, and that
accounting for measurement error increases the speed of adjustment. In their extensive
survey, Graham and Harvey (2001) find some, though not particularly strong, support
for the tradeoff theory. Baker and Wurgler (2002), on the other hand, suggest that
firms’ issuing behavior is driven by attempts to time the market, while Welch (2004)
shows that firms appear to do nothing to counteract mechanistic stock return effects on
market leverage. In Hennessy and Whited (2005) there is no leverage target towards
which firms adjust, in spite of their optimizing behaviour. Chang and Dasgupta (2009)
argue that the evidence for the tradeoff theory is not as strong as it may seem, as ran-
dom financing generates data similar to what actually is observed. Overall, the evidence
for firms adjusting towards an optimal capital structure is mixed, and Lemmon et al.
(2008) also cast doubt on rebalancing behavior since they find firms’ capital structures
to be remarkably persistent over time.

By analyzing leverage portfolios, Lemmon et al. (2008) find that “high (low) lev-
ered firms tend to remain as such for over two decades”, which seems to run counter
to a world where firms actively rebalance their capital structures towards targets. The
authors sort firms into quartile portfolios on the basis of firm leverage, and track the
portfolios” average leverage levels for 20 years. They find a large initial dispersion be-
tween the leverage portfolios. Over the years, the portfolios do converge to some extent
(most of the convergence happens early on), but significant differences remain even after
20 years. Controlling for known determinants of capital structure leaves their results
largely unchanged. Instead of sorting on actual leverage, they now sort on the residual
from a regression of leverage on lagged explanatory variables; the evolution of the aver-
age leverage of the resulting portfolios is similar to sorting on actual leverage directly.
Persistent differences between the portfolios remain even 20 years after formation.

DeAngelo et al. (2011) offer a potential resolution of the Lemmon et al. (2008)
results. In their model firms can finance investment either out of retained earnings
(cash), by issuing debt, or by issuing equity. Carrying cash forces the firm to incur
agency costs proportional to the cash balance. Issuing debt is costless, but there is
credit rationing in place, which caps a firm’s debt capacity. Equity issuance, on the
other hand, is costly. Generally, firms will avoid carrying a cash balance due to the
associated agency costs. Instead, they will free up debt capacity, so as to avoid a
costly equity issuance when installing new capital. This “transitory” debt, coupled

with various frictions in the model and cross-sectional dispersion in profitability shocks



leads to leverage sorts that resemble those of Lemmon et al. (2008). However, the sorts
are for raw leverage only: correctly controlling for the cross-sectional dispersion may
reduce persistence in their model.

Another recent effort to explain leverage persistence is by Menichini (2010). His
model, which includes agency costs and endogenous investment, leverage and dividend
payouts generates portfolio sorts on both actual and unexpected leverage that contain
long-term persistence as in Lemmon et al. (2008). This obtains largely because in his
model there is no single long-term mean towards which firms revert.

On the other hand, DeAngelo and Roll (2011) question capital structure stability
altogether, and argue that it is the exception, and not the rule. They find that many
firms which have been listed for 20 or more years, have leverage levels in at least three
different quartiles.

The goal of this study is to reconcile some of the recent empirical findings regarding
the persistence of capital structure. Both Roberts (2001) and Flannery and Rangan
(2006) suggest that measurement error may be partly responsible for the sluggish con-
vergence in leverage ratios towards their mean, as measured by the adjustment speed
parameter in a partial adjustment framework. The latter authors also show that includ-
ing firm fixed effects speeds up estimated convergence speeds. Lemmon et al. (2008)
also provide evidence for leverage persistence via their portfolio sorts, and suggest that
a fixed effect may be responsible. My paper expands on this literature in the following
way: I make precise the channel in which measurement error can add to the persistence
of leverage and load on a fixed effect in the Lemmon et al. (2008) portfolio sort setting,

and extract the amount of measurement necessary to reproduce the stylized facts.

2 Replication of the Lemmon et al. (2008) Findings

I start with a data sample that is comparable to that of Lemmon et al. (2008). The
sample consists of firms listed in the annual Compustat database between 1965 and
2003. Financials and firms with missing asset or debt values are excluded. Leverage
is constrained to lie in the closed unit interval. Definitions of all variables are given in
Appendix A. Explanatory variables are winsorized at the 15 and 99" percentile. Table
1 presents summary statistics, which are similar to those in Lemmon et al. (2008). The
table also displays a prominent feature of the data, namely the existence of zero-leverage

firms, whose proportion is, in fact, sizeable (see e.g. Strebulaev and Yang (2012)).

[Table 1 about here.]



Next, I carry out the Lemmon et al. (2008) portfolio sorts. The procedure is as
follows: Starting in 1965, and then every year thereafter, I sort firms into 4 quartile
portfolios on the basis of their book leverage level. I then compute the mean leverage of
each portfolio for the next 20 years, keeping its composition constant (save for potential
exits from the sample). Note that starting in 1983, the portfolios’ time series length
will decrease by one year every year. This results in a total of 38 portfolio time series
of length 20 years, or less. The portfolios are then averaged cross-sectionally in event
time, where the ‘event’ is the initial sort. Panel A of Figure 1 shows the results of this

procedure.
[Figure 1 about here.]

Panel A of Figure 1 is virtually identical to Panel A of Figure 1 in Lemmon et al.
(2008). There is wide cross-sectional dispersion among portfolios in the initial sorting
period. This dispersion is followed by an initially quick convergence towards the overall
mean, which starts to noticeably taper off as we move further away from the portfolio
formation year. After 20 years, there is still a 16 percentage point difference between
the highest and lowest leverage portfolios. This is the long-term persistence in raw
leverage that Lemmon et al. (2008) document.

Since the pattern uncovered in Figure 1 could be the consequence of cross-sectional
variation in underlying determinants of firm leverage, Lemmon et al. (2008) regress
leverage on lagged firm size, profitability, tangibility, market-to-book equity, and Fama-
French 38-industry dummies®. The regressions are estimated every year, which allows
for time-varying coefficient estimates. Then Lemmon et al. (2008) repeat the portfolio
sorts with a modification: firms are now sorted into portfolios based on the estimated
regression residuals (the “unexpected leverage”) instead of on actual leverage.

I follow the Lemmon et al. (2008) methodology with a slight modification: instead of
industry dummies, I use mean industry leverage (identified by Frank and Goyal (2009)
as an important determinant of leverage). Panel B of Figure 1 depicts the residual-
based sorts and reproduces Lemmon et al. (2008)’s findings virtually identically (see
their Panel A, Figure 2). The cross-sectional portfolio dispersion in the formation year
is still large, albeit slightly reduced as compared to sorting on actual leverage. In addi-
tion, the portfolio dispersion remains persistent, and significant differences between the
portfolios remain over the entire 20 years. In contrast, under a well-specified regression,
convergence of the portfolio leverage averages towards the overall mean should speed

up, since the residuals would not contain any information about firms’ future leverage

3Size, profitability and an industry dummy are used in e.g. Titman and Wessels (1988), while
tangibility and market-to-book equity are used e.g. in Rajan and Zingales (1995).



levels. In a further variance decomposition of ANCOVA models, Lemmon et al. (2008)
point out that a firm fixed effect is the largest component of the explained sum of
squares, and largely subsumes other determinants of leverage.

Lemmon et al. (2008)’s findings are striking, and more importantly, the persistent
differences between leverage portfolios cast doubt on theories of capital structure that
have the firm adjust towards some kind of optimal mix of debt and equity. However,
before turning towards new theories, it is useful to know to what extent existing theories

are able to accommodate the Lemmon et al. (2008) leverage portfolio graphs.

3 Possible Explanations

There are several possible channels that could give rise to the persistence of residual-
based leverage portfolios. However, they are all manifestations of the same underlying
cause: the regression residuals must contain information about future levels of leverage.
The first channel is that empirical specifications of leverage regressions are plagued by
an omitted variable problem. In its simplest form, it is possible that leverage is largely
determined by a time-invariant firm fixed effect, as suggested by Lemmon et al. (2008).
A firm fixed effect can be thought of as every firm having its own intercept in the
regression. Since the omitted intercept is constant over time, sorting on the regression
residual would lead to leverage persistence in the portfolios.

Another possibility is that regressions omit one or more time-varying persistent
variables that determine leverage. As with a fixed effect, the regression residuals are
no longer just noise, but contain important information. An example of this strand of
literature is the recent paper by DeAngelo et al. (2011), who model firms as incurring
transitory debt obligations that represent deliberate, but temporary, deviations from
a target capital structure. Carrying out portfolio sorts on their simulated firms also
results in persistent leverage portfolio. While they do not sort on the basis of regression
residuals, some of the persistence would likely remain: the failure to properly account
for the level of transitory debt would leave an omitted variable imbedded in the residual.

A third possibility is that the regressions are misspecified from an economic view-
point. For instance, if the firms face adjustment costs as in Fischer et al. (1989) or
Hennessy and Whited (2005), there would be no target leverage as implied by the re-
gression. Instead, the firm may choose to not alter its capital structure while leverage
is within a certain range.

Finally, it is possible that our economic models are correct, but our empirical proxies
for the benefits and costs of debt are inaccurate. Having mismeasured explanatory

variables would again create a correlation between the regression residual and leverage



itself, and sorting on the residual would resemble sorting on leverage.

Generally, distinguishing conclusively between these alternatives is difficult. Includ-
ing firm fixed effects in the regression explains much of the cross-sectional variation
between firms, because each firm is now allowed its own intercept. However, it does not
eliminate the interesting portfolio patterns in residual-based sorts, as shown in Panel C
of Figure 1. While a fixed effect reduces initial dispersion, there still is no convergence,
as the average leverage level of the low leverage portfolio now is substantially higher
than that of the high leverage portfolio after 20 years. In essence, including a fixed
effect demeans the portfolio leverage time series, but the patterns, albeit shifted, still
remain.

In the sections to follow, I show that the stylized facts obtain if leverage is a function
of one or more mismeasured explanatory variables that exhibit a certain degree of
persistence. 1 concede that my results cannot conclusively prove that measurement
error is, in fact, the culprit of the phenomena I study. However, I will argue that
measurement error in explanatory variables is intuitively sensible and consistent with
the data, which studies like Flannery and Rangan (2006), Roberts (2001), and Erickson
and Whited (2006) confirm.

3.1 Time Series Persistence in Leverage Portfolios as a Result

of Measurement Error

Differences between portfolio leverage levels naturally arise during the formation period
when firms are sorted into portfolios based on regression residuals. This is because the
residual is by construction correlated with the dependent variable leverage. However, if
the regression residuals are uncorrelated over time, then any initial difference between
the portfolios should completely vanish in the subsequent period.

In this section, I formally examine persistence in leverage sorts, starting with the
case where we can observe all variables perfectly. Here, sorting on the regression residual
will produce initial dispersion that immediately vanishes in the periods after portfolio
formation. I then show how persistence arises when the explanatory variable is mea-
sured with error. In my setup, I do not assume measurement error to be persistent or

firm-specific. The only persistent variable is the true, but unobserved regressor.

3.1.1 Base Case: A Correctly Specified Model

I begin with a world where leverage is a function of a single persistent explanatory
variable, which is perfectly measured. There exists a panel of firms, where 7 indexes a

firm, and ¢ indexes time. The dependent variable of interest, leverage, is denoted by



levy. Its true relationship to the explanatory variable x;; (e.g. size, profitability, or the

book-to-market ratio) is given by:
levy = Pry + uy (1)

where uy; ~ N(0, aiit) is an error term and [x; can be thought of as firm ¢’s leverage
target, towards which it fully adjusts every time period. The firm’s actual leverage lev;
equals its target, plus a random deviation u;. This deviation, which Lemmon et al.
(2008) refer to as unexpected leverage, represents an exogenous shock that occurs after
adjustment to the target has taken place. For instance, a change in the market value of
the firm’s equity would cause actual leverage to deviate from the target. The leverage

determinant z;; follows an AR(1) process of the form:
Tit = QLip—1 + €t (2)

where ¢ > 0 and ¢ ~ N(O,a?it). In the above, I am implicitly assuming that the
explanatory variable, and hence leverage, have a mean of 0*. Under this specification,
leverage directly inherits the dynamics of the explanatory variable. Tomorrow’s ex-
pected leverage, conditional on today’s observed leverage, is governed by the magnitude
of the autocorrelation coefficient of the AR(1) process, since E(levy|levy_1) = dlevyy_q.

If the value of ¢ is large®, then if we form portfolios by sorting on leverage and
track their evolution over time, the high leverage portfolios decline only slowly towards
the unconditional mean, while the leverage of low leverage portfolios increase equally
slowly towards the mean. The persistent difference between a high leverage portfolio
and a low leverage portfolio reflects the persistence in the explanatory variable. Figure
2 illustrates this via a simulation. Leverage is a function of a persistent explanatory
variable x;;, whose autocorrelation coefficient is ¢ = 0.85. The persistence in the
explanatory variable is clearly reflected in the slow convergence of the leverage portfolios
in Panel A: the high leverage and low leverage portfolios have not converged to the

unconditional mean of 0 after 20 time periods.

[Figure 2 about here.]

4This assumption is not crucial. We could easily add a mean to the explanatory variable x;

without affecting any of the conclusions. Furthermore, since it is possible in my setup for leverage to

lev
1—lev

logit transformation would map leverage from the real line back to the unit interval.

be negative, it is perhaps most natural to think of the lev;; as logit leverage In ( ) An inverse

5The assumption of a slow-moving explanatory variable is reasonable, since both empirical factors
and the underlying capital structure determinants they proxy for are persistent. Empirically, the

persistence of the tangibility ratio is ¢ = 0.95, for example.



If instead of sorting on actual leverage, we sort on unexpected leverage, i.e. on the
residuals obtained from a regression of lev;; on x;, convergence happens immediately
after the sorting period. Since there is no information in the regression residual about
future values of the regressor and hence leverage, next period’s average portfolio leverage
drops to its unconditional mean of zero right away, irrespective of the magnitude of the
residual that we condition on. To see this analytically, combine (1) with (2) to obtain

the following sample regression equation:

leviprr = Boxi + Beir1 + Uit (3)

The expectation of next period’s leverage lev;;, 1, conditional on this period’s esti-

mated regression residual ;;, obtained by running regression (1), is:

Ellevi|ty] = BoE[xit|tiu] + BE€i41|0i] + Eltips|t]
=0 (4)
since all three expectations on the RHS are equal to zero. E|xy|uy] = Elzy] = 0

follows from the orthogonality of the residuals to the regressor. The second expectation
vanishes due to the independence of €;,; and 4, while the last expectation equals
zero because of the temporal independence of the regression residuals. Thus, under a
correctly specified model of leverage, conditioning on the estimated residuals does not
produce persistent differences between leverage portfolios.

Panel B of Figure 2 shows the results for sorting on unexpected leverage (the es-
timated regression residual) instead of on leverage itself. Since the regression is well-
specified, today’s residual contains no information about tomorrow’s leverage, and both

portfolios converge to the unconditional mean after one time period.

3.1.2 Case II: Persistence as a Consequence of Measurement Error

In Section 3.1.1 I explain how, under a correctly specified model of leverage, conditioning
on the estimated residuals does not produce persistent differences between leverage
portfolios. This is no longer true if we measure a slowly moving explanatory variable
with error. To understand the transmission mechanism, I first assume that the regressor

x; 1s not directly observable, but a mismeasured regressor 7, is:
*
Tip = Tit + it ()

where n;; ~ N(0, asit) is measurement error, and u;;, €; and 7;; are independent. If we

*

run a regression of levy on zf;, the sample regression equation (* indicates a coefficient
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or variable that is affected by measurement error, and ~ denotes a regression estimate)
is:
levy = B*$:t + a:t (6)
The estimated slope coefficient of regression equation (6) is no longer unbiased (see
Appendix B.1):

B* _ cov(x}y, levy) _ 3 ol
o2 o2 + o2
x5, Zit Nit

<p (7)

The estimated regression residuals 4}, are now biased as well. If we use the residuals
U}, to form portfolios at time ¢ and track the leverage of these portfolios over time, next
period’s expected portfolio leverage is no longer equal to zero (or to the unconditional

mean, more generally):

Proposition 1. Suppose that leverage is determined by levy; = [xy + u;, where
Ty = Qxy_1 + €4, and all noise terms are normally distributed. If we regress lever-
age on the mismeasured observable variable x7, = x4 + 1, then expected leverage next
period, conditional on this period’s estimated regression residual U}, is a function of the

estimated residual:

A~ % O-Zit 1 1 - A~ %
E(levig1]ty) = ¢ |1+ ﬁ o2 + o2 Wit (8)
Tit Tit
—e>0
Proof. See Appendix B.2. n

Equation (8) shows that next period’s expected leverage is directly linked to this
period’s regression residual via the coefficient c. Its sign is positive, which implies that
the expected leverage conditional on a positive residual will overstate the true expected
leverage (and understate true expected leverage for a negative residual). This creates
an artificial leverage dispersion when we track leverage portfolios. The rate at which
the dispersion disappears is directly governed by the coefficient ¢, the persistence in
the underlying latent explanatory variable.

The link between regression residual and expected leverage is that the mismeasured
residual now contains information about the magnitude of the true explanatory variable
Zi, which in turn determines leverage. Recall the general expression for expected

portfolio leverage, conditional on sorting on the regression residual:
Ellevie|i3] = BOE[wi|tsy] + PE[€int1]05] + Eluwirs|5] (9)

As under the no-measurement error scenario, the second and third expectations on
the RHS are still equal to zero. The first expectation on the RHS, however, is no longer

equal to O:
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Lemma 1. Suppose that leverage is determined by levy = Pxy + uy, where xy; =
Oxi—1 + €4, and all noise terms are normally distributed. If we regress leverage on the
mismeasured observable variable x}, = x; + ni, then the expectation of the regressor,

conditional on the estimated regression residual U}, is:

Cov(xy, uly)

E(zali;) = Blra)+ [, — E(a7,)]

Var(a},)
o2 (1 1\,
- P ()] 1o
Nit Tit
b
Proof. See Appendix B.2, beginning with (44). O

This expression relates the expectation of z;, conditional on an estimated residual
U}, to the true parameters of the underlying processes, which are compactly captured
in the coefficient b. Importantly, knowing a particular value of @}, tells us something
about the value of the true x;;. This is because the estimated residual is not orthogonal
to the true regressor, i.e. E(xy|u};) # E(z;), unlike in the setup without measurement
error. With a latent explanatory variable, if the true relationship between lev;; and x;
is positive (i.e. § > 0), then a larger residual u, predicts a true z; that is above its
unconditional mean. Conversely, if 5 < 0, then a larger residual @}, predicts a true z;
that is below its unconditional mean.

The more mismeasured the regressor is, the more persistent are the residual-based
portfolio leverage levels. In Figure 3, I illustrate the effect of measurement error when
the value of the AR(1) coefficient of the regressor is ¢ = 0.85. The figure plots the
relationship between portfolio leverage dispersion and the magnitude of measurement
error, when firms are sorted based on regression residuals. I include two lines for
reference: the solid line shows the sort based on leverage itself, while the dotted line
shows a residual based sort without measurement error. In the latter case, the portfolios
collapse to the unconditional mean immediately after the sorting period, as discussed
before. The dashed lines show sorts for two levels of measurement error: o, € {0.5,1}.
The ratio of measurement noise to state noise in the regressor is thus also o, /0. €
{0.5,1}. The larger the quantity of measurement error is, the more do the residual-
based sorts start to resemble leverage-based sorts. At the higher level of measurement
error, the dispersion in portfolio leverage is about 50% of the dispersion when sorting

is done on leverage itself.

[Figure 3 about here.]
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Lemma 2. Suppose that leverage is determined by levy = Pxy + uy, where xy; =
Oxi—1 + €4, and all noise terms are normally distributed. If we regress leverage on the
mismeasured observable variable x}, = x; + 1, then the estimated regression residual

ul, will exhibit persistence:
E(tfl) = 6(8 — B E(waliy) = [6(8 — 470 i (11)
where b is as defined in Lemma 1.

Proof. See Appendix B.3. O]

Finally, Lemma 2 shows that when a persistent regressor is mismeasured, the esti-
mated regression residual itself will exhibit persistence. Increasing persistence (via a
higher value of ¢) and a larger attenuation bias in the cross-sectional § coefficient will
increase the explanatory power of a firm fixed effect. This is because the estimated firm

fixed effect will load on the persistent error term.

4 Extracting Measurement Error From Explanatory
Variables: A Calibration

In Section 3.1.2, I show both analytically and in simulations how measurement error in
a slow-moving explanatory variable can lead to leverage persistence in residual-based
portfolio sorts. While that section thus shows the theoretical channel through which
measurement error can produce persistence in portfolio sorts, it does not answer the
important question of how much measurement error is needed to reproduce wide initial
dispersion between the residual-based portfolios, followed by slow convergence.

The objective of this section is to assess whether a reasonably calibrated model
with measurement error in explanatory variables can satisfactorily explain the data. I
do this with two different approaches: in the first approach, described in Sections 4.1
- 4.2, T use the Lemmon et al. (2008) actual leverage portfolio sorts as the starting
point. If leverage is determined cross-sectionally by lev;; = Bz + uy, then in every
time period a firm’s leverage is equal to target leverage [z;; plus an error term .
Therefore, the portfolio leverage time series from the actual leverage-based sorts display
the same dynamics as the true leverage target, and thus can be used to infer the target’s
law of motion. Furthermore, if the regressions underpinning the residual-based sorts
correctly identified this true target, the leverage levels of the residual-sorted portfolios

should converge to the unconditional mean immediately. Since they do not, I use the
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portfolio leverage time series for the residual-based sorts to establish how mismeasured
the leverage target needs to be in order to be consistent with the residual-based sorts.

The second approach of quantifying the amount of measurement error needed to
reproduce the Lemmon et al. (2008) portfolio sorts is outlined in Section 4.3. There,
I examine four actual explanatory variables consistent with the Lemmon et al. (2008)
study, namely profitability, tangibility (which measures how tangible a firm’s collateral
assets are), the market-to-book ratio as a proxy for investment opportunities, and
industry leverage as a measure of industry-specific leverage targets. I determine how
mismeasured each of these needs to be in order to be consistent not only with the

portfolio sorts, but also with other observed data moments.

4.1 Estimating Target Leverage Dynamics

Under the first approach, I begin by parameterizing the law of motion for a firm’s
target leverage. In Section 4.2 I use this law of motion in conjunction with residual-
based portfolio sorts to back out an estimate of measurement error. To start, consider
again the setup from Section 3.1, where leverage lev; is a function of a slow-moving
factor x;;. This factor evolves according to an AR(1) process, but the true realizations

of the process are latent. The observed values z, contain 7¢d measurement error 7;:

l@’l)it = ﬁxit + Uy (12)
Tig = Qo+ O1Ti—1 + € (13)
T = Tig+ Mg (14)

where u;; ~ N(0,07), €4 ~ N(0,07), and 7y ~ N(0,07). An intercept ¢ is included in
the AR(1) process for the leverage determinant to allow for a non-zero mean. This is
necessary because actual leverage is bounded between 0 and 1; the leverage portfolios
have a positive mean, as seen in Figure 1, for instance.

In the cross-sectional specification in equation (12), actual leverage lev; can be
viewed as the sum of two components: a leverage target lgv\,;t = By = Ellevy|xyl,
which the firm adjusts to every period, and a random deviation from the target w.
Implicit in this representation is the assumption that there are no adjustment costs
that would cause the firm to deviate systematically from its target for multiple periods.
While the target in (12) is determined by just a single variable, using the target leverage
representation does allow the flexibility of viewing the target as a function of potentially
many explanatory variables, so the above setup of only one explanatory factor does not

result in a loss of generality. Substituting target leverage in (12) and (13) above gives
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the following system:

—~

levyy = levy + uy (15)
@it = o+ 901@1‘15—1 + €it (16)
Ty = T+ (17)

The law of motion for target leverage feEit in (16) is the same as that for the original
factor in (13), scaled by the constant S. If more than one explanatory factor were
included, the target dynamics can be thought of as a linear combination of AR(1)
processes, which would result in an ARMA representation® for the target.

To estimate parameter values in (15) - (17), I proceed as follows: in the first step, I
use the Lemmon et al. (2008) portfolio leverage time series (sorted on actual leverage) to
parameterize (15) and (16). After estimating target leverage dynamics, I then determine
how mismeasured (by virtue of mismeasuring the underlying factors) the target needs
to be in the cross-sectional regressions for the patterns in the residual-based leverage
sorts to obtain. Without loss of generality, I simplify the analysis by examining only two
portfolios, a “high leverage” portfolio and a “low leverage” portfolio, as opposed to the
4 portfolios in their original study. This does not affect the results; the main Lemmon
et al. (2008) conclusions, namely initial convergence and long-term persistence, are still
evident with only 2 portfolios.

Using the actual leverage-based portfolios, I estimate four parameters in equations
(15) and (16): the cross-sectional error variance o2, and for the AR(1) process governing
target leverage the intercept ¢y, slope coefficient ¢; and error variance o2. 1 simulate
the system (15) - (16) above for both realized leverage and the target, and then find
parameter values that minimize the sum of the squared differences between actual

portfolio leverage and simulated portfolio leverage, i.e.
: stm act 2
min Z ; (PFlev;, PFlev™) (18)

where the parameter vector ® = {02, ©g, 1,02}, and PFlev; denotes the leverage of
portfolio i (i indexes high and low leverage) at time ¢. The parameter estimates are as

follows:

©o ©1 O¢ O,
Estimate 0.021 0.930 0.066 0.080
Std. Error (0.012) (0.009) (0.003) (0.010)

bsee e.g. Granger and Newbold (1977)

15



The estimated coefficients are of reasonable magnitudes, roughly in line with what a
pooled regression would yield. In addition, simulating the Lemmon et al. (2008) actual
leverage-based portfolio sorts using the parameter values above provides a good fit to

the real data, as shown in Figure 4.

[Figure 4 about here.]

4.2 Estimating Measurement Error by Extracting the Mis-

measured Target

Section 4.1 retrieves the dynamics of a leverage target lgv\it = [Bxy by calibrating an
AR(1) process for the true target to the Lemmon et al. (2008) portfolios sorted on
actual leverage. The objective now is to extract a mismeasured leverage target le/v\;‘t
consistent with the residual-based portfolios. The mismeasured target will allow us to
compute the mismeasured residuals, which form the basis of the residual-based portfolio
sorts because

levy = lev?, + uf, (19)
Equation (19) decomposes a leverage observation into a mismeasured target and a
mismeasured residual. Using a noisy determinant in the regression implies that the
target leverage (i.e. the regression’s predicted leverage value) is also mismeasured. As
mentioned before, I avoid explicitly modeling an explanatory variable z;, or x}, in
its mismeasured form, but focus on the target instead. It is possible to recover the

—

mismeasured target leverage lev,

%, because we can express it as a function of the true

target:

Proposition 2. Suppose that leverage dynamics are given by equations (12) through
(14). Using a mismeasured explanatory variable x}, in the cross-sectional leverage re-
gression will cause target leverage lgiz*t (the fitted regression value) to be mismeasured
as well. This mismeasured target can be expressed in terms of the true target lgv\it by

the following regression.:

le/v\;‘t =g+ ozlbe/v\” + ey (20)
where

ap = (1—a))E(levy) (21)
1

= 22

a 1+a (22)

— a

O'z = Var(le’uit)m (23)

2
o
a = U—g (24)
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Proof. See Appendix C. O

Proposition 2 states that knowledge of the true target dynamics, via the method-
ology in Section 4.1, permits an explicit solution for the mismeasured target leverage
in (20). The unknown parameters ap, a; and ¢? are functions only of known data
moments and a given ratio of measurement noise to cross-sectional variation 7 / o2 = Q.
This ratio can thus be used to indirectly quantify the amount of measurement error in
equation (14), and also allows for an explicit solution for the parameters in Proposition
2. Furthermore, as long as measurement error is present, the variance of the mismea-
sured target Var(lgv\ft) is always less than the variance of the true target Var(lefzz-t)
(see (65) in Appendix C for a proof). In fact, the larger the amount of measurement
error in the underlying leverage determinant, the smaller will be the variation in esti-
mated target leverage. This phenomenon warrants a short explanation. As we increase
the amount of measurement error on the right hand side in a univariate regression, we
increase attenuation in the slope coefficient. This naturally results in a larger estimated
intercept. For instance, consider an extreme example where the signal-to-noise ratio of
the explanatory variable goes to zero, i.e. the observed z, is (almost) completely white
noise. In this case, the estimated intercept will approach the unconditional mean of
the dependent variable. This makes intuitive sense: the 'best’ predicted value of the
dependent variable in the presence of an (almost) useless explanatory variable should
just be the dependent variable’s unconditional mean.

This reasoning translates directly to the relationship between estimated mismea-
sured target leverage and the true target, as given by (20). If the target were perfectly
measured, then ag = 0, a; = 1 and 02 = 0. As the measurement noise in the observed
explanatory variable increases, the mismeasured target will become more stable relative
to the true target: ap > 0 and oy < 1, while ¢ will increase at first and then decrease
again. In the limit, with the signal-to-noise ratio of x}, approaching 0, the mismeasured
target is constant with oy = E(lev), a; = 0, and o2 = 0.

While the mismeasured target will always be less variable than the true target,
it still equals the true target, on average: ]E(l;z;) = E(Z/GZ) (see (57) in Appendix
C for a proof). Intuitively, this is due to regression mechanics: the mean predicted
value will equal the dependent variable’ unconditional mean, regardless of whether
there is measurement error in the explanatory variable. Naturally, this only holds in an
unconditional sense; if a given true x;; is above its unconditional mean, the mismeasured
target will underestimate the true target, and vice versa. Figure 5 illustrates this point

for various levels of the noise-to-signal ratio a. As a increases, the effect becomes more
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visible. For instance, in Panel 4 with a = 1.25, when true target leverage is below its
unconditional mean of 0.27, the mismeasured target tends to be larger than the true

target, i.e. it is closer to the unconditional mean of the leverage variable.
[Figure 5 about here.]

I next recover the implied ratio a of measurement noise to cross-sectional variation
in the explanatory variable that minimizes the sum of squared differences between the

simulated and actual portfolios, sorted on mismeasured residuals:

miny Y (PFlevii™ — PFlevit)’ (25)
it
PFlevy; denotes the leverage of portfolio ¢, where ¢ indexes high and low leverage at
time t. To do the portfolio sorts embedded in the above minimization, I first compute
the mismeasured target lgv\jt from the true target z&; via (20), and then solve equation

(19) for the residual wj,. Figure 6 shows the results of this minimization.
[Figure 6 about here.]

The simulated residual-based portfolio sorts most closely match the empirical ones
with a noise-to-signal ratio of a = 1.42 (std. error = 0.12), i.e. the variance of the
measurement error needs to be 42% larger than the cross-sectional variation of the
true but unobserved explanatory variable x. Clearly, this amount of measurement error
seems large, but one needs to keep in mind that the sole factor x in my setup serves as a
stand-in for all the determinants of leverage. For instance, in a multivariate world, high
levels of measurement error in one variable counterbalances low levels of measurement
error in another.

Another consideration is that in the previous calibration each portfolio received an
equal weighting, which resulted in a = 1.42. Weighting some observations more heavily
than others may also reduce the value of a. Furthermore, a = 1.42 results in the best
fit, but it is instructive to assess the impact that lower noise-to-signal ratios a have on
the residual-based portfolio sorts. Therefore, I simulate the portfolios for various levels

of a. The results are shown in Figure 7.
[Figure 7 about here.]

The simulations show that even small quantities of measurement error relative to the
variance of the explanatory variable produce a surprising amount of persistence in the

residual-based sorts. For instance, Panel 4 shows that a noise-to-signal ratio as low as
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0.75 still produces a good fit to the actual portfolios in year 5 and beyond. This proves
that while large quantities of measurement error are needed to reproduce the stylized
facts exactly, much more moderate levels still result in a good fit. Panel 2 depicts
portfolios where a = 0.25; even after 20 time periods, a persistent difference remains
between the high and low leverage portfolios. Furthermore, the difference in year 20
between the simulated portfolios is almost as large as that of the actual portfolios. This
reinforces the view that measurement error is likely a contributing factor to persistence

in residual-based portfolio sorts.

4.3 Multi-Variable Calibration with 2:d Measurement Error

In Section 4.2, I obtain an estimate of the noise-to-signal ratio that best reproduces the
residual-based portfolio sorts in an implied single variable framework. I next investigate
whether measurement error in explanatory variables similar to those used by Lemmon
et al. (2008) is able to reproduce the leverage time series of both the actual- and
residual-based portfolio sorts. I focus on profitability, tangibility, market-to-book, and
industry leverage (in lieu of an industry fixed effect) as explanatory variables. Firm
size is excluded, since it is not stationary and thus would not conform to my setup of
modeling the explanatory variables as AR(1) processes.

The estimation procedure, a form of the simulated method of moments framework,
proceeds in a similar fashion to that in Section 4.2. In particular, the economy consists

of simulated firms whose leverage dynamics are governed by the following system of

equations:
levi = B'(1 xs) + wie (26)
1
Profi
= (BO 5Prof ﬂTang 6MB 51ndLe'u) Tangit + Uit (27)
M By
IndLevy
ZTit = Go+ P1Tit—1 + €t (28)
(I)"rof ¢frof 0 0 0 Eimf
Tang Tang 0 0 6Tang
0 1 it
= + Tig—1 + (29)
e 0 0 WP o e
¢éndLev 0 0 0 qb.{ndLev EltndLev
i
:l:;-kt = T+ Mt (30)
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The errors are all normally distributed with w;; ~ N(0,02), € ~ N(0,%.), and
Mt ~ N(0,3,). Leverage is determined in the cross-section by an intercept and the
four explanatory factors, which are all modeled as AR(1) processes. Firms differ in
terms of the realization of a particular variable, but the coefficients in the model are

the same for all firms. The true explanatory variable vector x;; is latent; the observable

*

it
imperfect proxies for the true economic fundamentals driving leverage.

x*, is measured with error. This reflects the fact that the explanatory variables are

The covariance matrix of the innovations of the AR(1) processes X is diagonal, as

is the covariance matrix of the measurement error terms 3,

62P'rof 0
0 2
¥, = Tang (31)
0 0 % 0
O 0 O O_zlndLev
%Prof 0 0 O
0 2 0 0
27] — UnTang ) (32)
0 0 Tt 0
0 0 0 o2

NIndLev

There are a total of 22 unknown parameters in this formulation: the intercepts, slopes,
and error variances of the AR(1) process (12 parameters), the cross-sectional betas
and the error variance o2 (6 parameters), and the measurement error variances (4
parameters).

To reduce the number of free parameters in the model, I infer the unconditional
means of the noisy explanatory variables directly from the data. This is possible, since
mismeasured and latent explanatory variables have the same mean: pz« = E(x},) =
E(xi + mit) = E(xit) = pe. This allows me to express the intercepts of the latent
AR(1) processes as functions of the empirical means of the respective variables and

estimates of ¢, which is a free parameter matrix:

$o = (Ia— 1) pa (33)
= (Is — ¢1) po- (34)
I use I to denote a 4 x 4 identity matrix. In fact, several other parameters could

be inferred directly from the data’, namely the variance of leverage, Var(lev), and the

variance matrix of the noisy explanatory variables X ,«. However, forcing the constraints

"We could relate the variance matrix for the AR(1) innovations X, to the variance of the noisy
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that the model imposes on the variances to hold exactly is too restrictive and results
in a poor fit. Instead, the variances are added as moment conditions, which results in
the simulated values being close to the data values without the need to match them

exactly.

4.3.1 Identification

To reduce the dimensionality of the parameter space, I compute the intercepts for
the autoregressive processes directly from the data via (34). This pares down the
free structural parameters to a total of 18: the matrix ¢;, which contains the slope
coefficients for the explanatory variables, the innovation standard deviation matrix 3,
and the measurement error variance matrix X, need to be estimated. Furthermore, the
parameter vector (3, which governs the cross-sectional relationship between leverage
and its determinants, along with the standard deviation of the cross-sectional residual
0, has to be estimated.

The structural parameters underlying the latent processes are obtained by matching
simulated sample moments to data moments. Broadly speaking, the data moments
consist of sample statistics for leverage and the explanatory variables, the parameter
estimates of the mismeasured AR(1) processes driving the explanatory variables, the
regression parameters from a panel regression of leverage on its noisy determinants,
and the portfolio leverage levels of the Lemmon et al. (2008) portfolio sorts. Since I
assume that the actual data on explanatory variables is contaminated by measurement
error, all data moments involving explanatory variables are mismeasured as well. In

particular, I use the following moments:

1. The intercepts ¢ and slope coefficients ¢} for each explanatory variable (i.e. prof-
itability, tangibility, market-to-book and industry leverage), which are obtained

by regressing each observed mismeasured explanatory variable on its lagged value

factors X+, and the variance of the regression residual o2 to the variance of leverage Var(lev) via:

e = (Ia—¢i'¢1) o (35)
= (Ia—¢1'¢1) (Bor — ) (36)
02 = Var(lev) — BE,08 (37)

The first equation is a rewritten expression for the variance of a vector of AR(1) processes. Solving
for the variances of the error terms e requires the slope coefficients and the variances of the latent
explanatory variables, which I express as the difference between the variances of the observed mismea-
sured variables and the variances of the measurement error terms. The last expression computes the

variance of (27) to solve for the variance of the residual.
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(8 moments):
Ty = ¢y + P1ay_ + €y (38)

2%

=, and the variance of

2. The variance of each mismeasured explanatory variable o

leverage o7, (5 moments).

3. The cross-sectional coefficients §* from a regression of leverage on the noisy de-

terminants (5 moments):

levi = BY(1 =) +u;,  where (39)

’

16* = (ﬁg ﬂ;rof B;ang 6}.\</IB ﬁ;ndLev) (40)
and x7, is the vector of mismeasured explanatory variables.

4. The time series of portfolio leverage levels obtained after sorting on both actual
and unexpected leverage (80 moments in total; a time series consists of 20 portfolio

leverage levels for each ‘high leverage’ and ‘low leverage’ portfolio).

For both actual and simulated data, the moments are collected in vectors me¢t and
m*™  respectively. The structural parameters collected in the vector

o = (¢ X X, B 0,) are found by minimizing the sum of squared differences
between actual moments and simulated moments:

mqin (ma,ct o msim)/(mact o msim) (41)

This minimization makes the simulated moments as close to their actual counterparts

by picking the ‘best’ structural parameter values.

4.3.2 Results

The estimated structural parameters of this procedure, along with their standard er-
rors®, are listed in Table 2. Table 3 presents a comparison of empirical data mo-
ments, their simulated counterpart based on mismeasured variables, and moments that
are based on the estimated true latent parameters. For each explanatory variable,
I present intercept and slope coefficient of the AR(1) process and its variance. For
the cross-sectional relationship between leverage and its determinants, I present the -
coefficients for each variable (including an intercept), as well as the leverage variance.

Table 4 gives two estimates of the ratio of measurement noise to state noise for each

8The standard errors are obtained by bootstrapping: First, all empirical moments are recalculated
for subsets of the Compustat universe. I then estimate structural parameters for each of the subsamples.

The standard errors are then given by the standard deviations of the estimated structural parameters.

22



simulated explanatory variable. The first estimate is the ratio of measurement error
variance to variance of the latent underlying variable, while the second estimate is the
ratio of measurement error variance to variance of the observed variable, which thus in-
cludes the measurement error variance in the denominator. Finally, Figure 8 shows the
portfolio sorts on actual and residual leverage, which are obtained with the estimated

parameter values.
[Table 2 about here.]
[Table 3 about here.]
[Table 4 about here.]
[Figure 8 about here.]

For both the tangibility and industry leverage ratio, the calibrated values of the
latent processes are very close to the empirical data values. As measured by the AR(1)
parameter and shown in Table 3, the estimated persistence for tangibility is 0.936 (em-
pirical data value of 0.952), while it is 0.891 for industry leverage (empirical data value
of 0.908). The estimated magnitude of the measurement error standard deviation o,
is small in both instances, and well below the standard deviation of the innovation o,
in the respective AR(1) process (see Table 2). This results in a ratio of measurement
error variance to latent variable variance 072] /o2 of 0.021 for tangibility and 0.018 for
industry leverage (see Table 4, column (1)). Very similar values for the measurement
error ratio are obtained if the variance of the observed explanatory variable is used in-
stead. Consistent with the low quantity of estimated measurement error, the structural
B-coefficients for both variables are close to their empirical counterparts (see Table 3).

Table 3 reveals that latent profitability (¢; = 0.832) is more persistent than ob-
served profitability (¢7 = 0.775). The depressed observed ¢ coefficient is caused by
measurement error in observed profitability with an estimated standard deviation of
0.105 (see Table 2), which also induces a slight downward bias in the cross-sectional
£*. Relative to tangibility and industry leverage, the measurement error ratios for
profitability have increased to 0.09 and 0.083, respectively (see Table 4). These value
are still low; for example, the latter value implies that only 8.3% of the variation in
observed profitability is due to measurement error.

The most interesting result obtains for the market-to-book ratio. The latent AR(1)
process has an estimated value of ¢; = 0.931, while the empirical process has a value
of ¢7 = 0.534 (see Table 3). Note that the simulated ¢} value, obtained by regressing

simulated mismeasured market-to-book on its lagged value, is 0.530, which is very
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close to the empirical estimate. The discrepancy between latent and observed ¢, is
caused by a measurement error standard deviation that is large compared to that in
the other variables. Its value is 0, = 1.476, which exceeds the standard deviation of the
innovation term in the AR(1) process, whose value is 0. = 0.603, as shown in Table 2.
The resulting measurement error ratio is o7 /o7 = 0.802, which drops to o7 /02. = 0.445
if we use the variance of the observed market-to-book ratio in the denominator (see
Table 4). This latter value implies that 44.5% of the observed variation in the market-
to-book ratio is driven by noise. While this seems large, the market-to-book ratio as a
proxy for investment opportunities can ex-ante be expected to be noisy. Erickson and
Whited (2006) state that “all observable measures or estimates of the true incentive
to invest [...] are likely to contain measurement error.” Their paper notes that this is
because accounting information inaccurately reflects both the market value of debt and
the replacement value of assets, and because strong assumptions are needed for Tobin’s
q to accurately reflect a firm’s incentive to invest. Using a classical errors-in-variables
model with the investment-to-capital ratio on the left-hand side and average ¢ on the
right-hand side, Erickson and Whited (2006) report that approximately 59% of the
variation in book value-based measures of Tobin’s ¢ is driven by noise, and only 41%
is driven by variation in the true unobservable g. This is consistent with my model,
where 55% of the variation in the market-to-book ratio is due to variation in true g.

My estimates of the structural parameters produce a variance in the observed
market-to-book ratio of 4.895, which is exactly equal to its empirical counterpart. Thus,
the results are not driven by an unnaturally high total variance in the market-to-book
ratio. In the simulated cross section, this means that the true latent [-coefficient for
the market-to-book ratio is -0.105, which is much larger than the empirical value of
-0.006 (Table 3). The simulated mismeasured observed value for Sy is -0.058, which
is larger than the data value. My results nonetheless suggest that a market-to-book
ratio which is a poor proxy for true investment opportunities plays an important role in
the persistence of the residual-based portfolio sorts. Since an option to invest is riskier
than the investment itself, firms with a high true ¢ would optimally choose to carry
lower amounts of leverage. However, this effect is obscured in the data due to the high
amount of measurement error inherent in the market-to-book ratio.

Overall, the estimation produces sensible parameter values, and the simulated mo-
ments closely resemble their empirical data counterparts, as a comparison of the “Data
Value” and “Sim. Value” columns in Table 3 reveals. Finally, Figure 8 shows the results
of the portfolio sorts. Using the estimated values of the structural parameters in Table
2 produces a close fit between empirical and simulated portfolio leverage time series,

regardless of whether the sort is done on actual or residual leverage. While the simu-
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lated residual-based portfolios exhibit less dispersion than their empirical counterparts
in years 2-5, they track the empirical time series closely in the other time periods. This
shows that low levels of measurement error in profitability, size, and industry leverage,
coupled with a larger, yet realistic amount of measurement error inherent in using book
value-based proxies of Tobin’s ¢, is able to produce close matches to the Lemmon et al.

(2008) portfolio sorts, and thus offers a potential explanation of their findings®.

5 Conclusion

Persistence in residual-based leverage portfolios is a well-documented fact. While this
persistence may be a consequence of a firm fixed effect or omitted time-varying vari-
ables, I show that it can also arise when slow-moving explanatory variables in a leverage
regression are measured with error. Sorting firms into portfolios based on these regres-
sion residuals will resemble sorting firms into portfolios based on actual leverage.

Being able to predict future leverage with the regression residuals implies that target
leverage is mismeasured. I find that if we view the target as being determined by a
single composite factor of a number of possible tradeoff theory variables, then the
measurement error variance of this latent factor needs to be 42% larger than its cross-
sectional variance. This number is large, but nonetheless a useful measure, as one can
interpret it as an aggregate estimate of how mismeasured the explanatory variables
would need to be. In addition, a measurement error with a magnitude of 75% of
the state noise variance of the latent variable still produces persistent residual-based
portfolio sorts. Therefore, even if one takes the view that measurement error alone is
not sufficient to fully account for the persistence in residual-sorted leverage portfolios,
it nonetheless is likely to be an important contributor, since sizeable persistence in the
residual-based portfolios arises even at low ratios of measurement error to state noise
in the explanatory variable.

[ also examine measurement error in several important explanatory variables, namely
the firm’s profitability, the tangibility of its assets, the market-to-book ratio, and indus-
try leverage. I find that low quantities of measurement error in profitability, tangibility,
and industry leverage, coupled with a measurement variance equal to about 80% of the
cross-sectional variation in the market to book ratio, produce a good fit of simulated
sample data moments to empirical moments. Furthermore, the level of measurement

error in the market-to-book variable, which proxies for Tobin’s ¢, is consistent with

9In unreported results, I determine that model fit can be improved by allowing for a slight auto-

correlation in the measurement error terms themselves.
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other studies such as Erickson and Whited (2006), and suggests that unobserved in-
vestment opportunities may play an important role in explaining leverage ratios, and
the persistence of the residual-based portfolio sorts.

The focus of this paper is on capital structure. However, portfolio sorts are also a
popular tool to evaluate returns of trading strategies, and to test asset pricing models.
Measurement quality is an important consideration for the risk factors in these models,
so my work may have implications for the asset pricing applications of portfolio sorts

as well.
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Appendices

A Variable Definitions

Data are taken from the annual Compustat database between 1965 and 2003. The vari-
able definitions mirror those in Lemmon et al. (2008). Financials and firms with missing
asset or debt values are excluded from the sample. Leverage is constrained to lie in
the closed unit interval. Size, profitability, tangibility, and the market-to-book ratio are

winsorized at the 1% and 99" percentile. The construction of each variable is as follows:

Short Term Debt [34] + Long Term Debt [9]
Book Assets [6]
Total Debt = Short Term Debt 4+ Long Term Debt

Size = In(Book Assets [6])
Operating Income before Depreciation [13]
Book Assets [6]
PPE [13]
Book Assets [6]
Market Equity = Share Price [199] * Shares Outstanding [54]
Market Equity + Total Debt + Pref. Stock Liq. Value [10] - Def. Taxes [35]

Leverage =

Profitability =

Tangibility =

Market-to-Book =

Book Assets [6]
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B Derivations

B.1 Attenuation Bias

Intermediate Steps:

B* _ cov(xy, levy) _ E [(zi + 1) (Bri + wir)] — E(xi + 1) E(Bzi + wir)
o E[(zi 4 1i)?] — Bz 4 173)?

it

BE(x) — BE(xq)?
E(z3) + Enj, — E(zi)
2

= BL (42)

2 2
Jﬂﬂiz + Oﬂit

B.2 Conditional Expectation of Leverage Under Measurement

Error

We want to compute expected portfolio leverage, conditional on sorting on the mismea-

sured regression residual:
Ellevi|tg] = BOE[w3|ty] + PE[€iq1|05] 4 Elui |d5] (43)

The second and third expectations on the RHS are equal to zero. Ele;q|tf,] = 0
since next period’s innovation in the explanatory variable is independent of this year’s
estimated residual. Similarly, next period’s true residual in the leverage regression is
independent of this period’s estimated residual, so E[u;11|a}] = 0. The first expectation
on the RHS, however, is not equal to 0. The residual 4}, contains information about
the true zy, so E(zy|a},) # E(x;). To see this, assume that x; and 4, are normally
distributed random variables. Start with a scalar version of the conditional expectation
of multivariate normal random variables '°:

Cov(zy, ul,)

E 3 M’( :E 1 ~
(‘/E tluzt) ([E t) + VCLT(U;})

[ — B(d,)] (44)

Now express 4}, as 4}, = levy—p*x}, = Braytup—/F*(Ta+ni) = (B—0)xiu— L nu+uq

et 21 ... 25 be multivariate normal, and collect (21 ...x,,)" in a vector x4, and (11 ...2x)" in
x
a vector xp (1 < m < N —1). Then stack the vectors and let x = ( @ > with mean ( Ha ) and
Tp Ho
Ya Yab
Yba b
be interpreted as the coefficients of a regression of z, on z; (see e.g. Greene (2003)).

covariance matrix X = ( ) Then E(z,|xp) = pa + ZabEljl(xb — 1p), where ZabEljl can
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and substitute:
E [(ﬁ — B*)I'?t — B*nitxit + Uitxit] — E(xi)E[(5 — B*)xzt]

E(zi|ty) = E(zi)+ R " 2 U
E (8- 8% + (B + 2] - |(8 - B)E(wa)

= E(zy)+ (B - B*)[ (27 ) E:(wzty] i,
(8 = B*2[E(a}) — E(za)?] + (3)?E() + E(uf)
I 8- 517, "

(8 = B*)202, (5) T T Ol

2

Expanding the quadratic in the denominator and substituting 5 6 —5— gives
Ak (/3 /8 ) Ll?t Ak
E(zalty) = E(wa)+ Z 2.2 5 it
(82 = 280" + (B)?)02,, + (67)%02, + 02,

(B—p )
B(B — 2602, + B* Bor i ( 2 +02)+o2,

(/8 /6* ) xzt -~k
Uiy
B(B— B*)o2, + o2,

>
*

it

X O (T2, T o0 )\
= E(zy) +b-aj; b= <5 + Ztﬁazﬁ 2 ) (46)
Tit nit
In my setup, E[z;;] = 0, so the expectation of x;; conditional on the regression
residual @, is
. o2 (1 1\,
E(wuli;,) = B+ 5 \oz + = Uy (47)
Nit Tit

Finally, substitute (47) into (9) to obtain an expression for the conditional expec-

tation for next period’s leverage:

~ % ~ ok O-git ]‘ ]‘ o ook
E(levig|ty) = Bob- i, = ¢ |1+ 3 52 + = Uy (48)
MNit Tit
—c>0

B.3 Residual Persistence

As before, express the regression residual as

ﬁ;‘kt—i—l = (8- B*)l’itﬂ - B*nitJrl + Uit
= (8- B*)(Cbifit + €ir) — B*nit-i-l + Uit+1 (49)
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Then

E(@it+1|ﬂ§}) = (8- B*) [PE(witlty,) + E(ex|ts)] — B*E(mm%) + E(uirt1 i)
= (8- B)oB(aliy) = [0(8 - B0 @ (50)

C Implied Target Leverage Derivations

Derivation of o

Begin with the relationship between mismeasured target and true target:

—_ —~

levy = ag + aylev + e (51)
Taking expectations:
E(lev*) = ag + oy E(lev) + 0 (52)

Mismeasured target and true target are equal, on average, i.e. E(lzq?“) = E(l/eZ) To
see this, start with the regression specification where the explanatory variable x* is
measured with error (* denotes that a variable or parameter is affected by measurement
error):

lev = B; + Biz" + € (53)

Taking expectations:

ol .
U%E(x +n) + E(%)

E(lev) = B+ M

a;
52
= b+ = n UQE(lev) (54)

z n

Therefore,
2

b = Blen) (1- 57 ) (55)

2 2
oy + 0oy

Mismeasured target leverage is given by
lev* = fy + o (56)

Substituting for 5 and S shows that the mismeasured target equals true target (and

hence actual leverage), on average:

o 2

o o2
E(levt) = E(lev) (1 - = ) + 72 xagﬁﬂE(aE +n)
@ T 9y

oz +o; +
o2 o2
= E(lev) (1 = a%) + Tt U%E(lev)
= E(lev) (57)

30



Substituting (57) into (52) then yields an expression for ay:

— —

E(lev’) = E(lev) = ap+ aqE(lev) + 0
ap = (1—ay)E(lev) (58)

Derivation of oy
Since (51) above is a regression equation:

o — cov(lev,/l\e”u ) (59)
Var(lev)

Expanding the numerator:

cov(l/&),@) = Cov (biz, By + Bi(x+1n))

o; o;
= Cov (ﬁlaz,E(lev) <1 T 03,) + b 2402 (x + 7]))
o; o;
= Cov (51%51 o2 1 072733) + Cov (5133,/31 o2+ 0377)
=0
) Oy

Substituting:

e 2
cov(lev,lev*) Bt J%?—EJ% Var(z)

Var(lTez)) - BiVar(x)
2
- a?c(:fa,% (61)
Finally, let a = %, and substitute into (61):
1
T +a (62
Derivation of o2
Start again with (51), and compute the variance:
Var(lzz?") = a%Var(l/eZ) + o2 (63)

We can compute Var(l/e;)) from calibrating the true target to resemble the leverage-
sorted portfolios. To compute Var(@), start again with

o;
o240

lev: = B3 + Bia* = B3 + B (z +7) (64)

2
n
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Then compute the variance:

_ o2
Var(lev*) = Var (510 . 2($+77))

o +o;
_ B2 (03)°
Lo2 + o
e 2
= VCLT([@U) 2 x0'2 (65)
T Y
SVar(@)
Substitute (65) into (63), and solve for o
~. o 2 > 2
Var(lev T — = ajVar(lev) + o 66
( )0_3% + 0_% 1 ( ) e ( )
Again express measurement error as a fraction of the variability of the true x: 072] = ao?.

We can now solve for the implied variance of the residual e as a function of the amount

of measurement error present:

(67)
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Figure 1: Average Leverage of Book Leverage Portfolios.

Using the 1965-2003 sample of nonfinancial Compustat firms, I sort firms into 4 portfolios.
In Panel A, the sort is based on the firm’s actual level of book leverage. In Panel B, the
sort is based on residuals from a regression of book leverage on lagged size, market-to-book,
profitability, tangibility and mean industry leverage. In Panel C, a firm fixed effect is added
to the other explanatory variables. I then compute the mean leverage of each portfolio for the
next 20 years, keeping its composition constant. I repeat this procedure for all years until the
end of the sample period. The resulting 38 portfolio time series are then averaged in event
time. Variables are defined in Appendix A.
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Figure 2: Portfolio Convergence.
The two panels show the evolution of leverage portfolios, where simulated firms are sorted
into either a high or a low leverage portfolio. In Panel A, the sort is based on actual leverage
at time 0, while in Panel B, it is based on unexpected leverage at time 0. Unexpected leverage
is the residual obtained from a cross-sectional regression of leverage on its determinant, which
is estimated each year. The firms are kept in their respective portfolios for 20 years. The
sort is carried out every year for 40 years, giving rise to 40 time series, each being 20 years
long. The time series are then averaged in event time within each portfolio, resulting in the
graphs above. Individual firm time series are produced as follows: each period, leverage is

determined as a function of an explanatory variable x:

levyy = Py + uy (68)

where § =1 and u; ~ N(0,0.25). The leverage determinant z;; follows an AR(1) process:
(69)

Tit = QL1 + €t

with ¢ = 0.85 and €;; ~ N(0,1). The time series for z is simulated for 160 time periods, of
which only the last 60 are retained to approximate a steady state. I simulate a cross section

of 5,000 firms.
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Figure 3: Comparison of Portfolio Leverage Dispersion as a Function of Measurement Error.
The simulation setup is as before, e.g. in Figure 2, but only the mismeasured regressor zj, is
available. I simulate the following system 5,000 times:

levig = Pxi + ug (70)
Tit = Qmi—1+ € (71)
Ty o= T+ i (72)

where f = 1, uy ~ N(0,0.25), ¢ = 0.85, and €;; ~ N(0,1). The available regressor z* is
imperfectly measured. I perform the residual-based portfolio sorts as before, for 3 levels of
measurement error: o, € {0,0.5,1}. The ratio of measurement noise to state noise in the
regressor is thus also o, /0. € {0,0.5,1}. The leverage-based portfolio sort (solid line) is
included for reference. Shown are the average portfolio leverage levels over an event horizon
of 20 time periods.
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Figure 4: Data-Implied Target Leverage Dynamics.

I model leverage lev as a function of its target @, which in turn is an AR(1) process:

o~

levy = levy +wuy (73)
@t = o+ QDll/Ez)t_l + & (74)

The red crosses correspond to actual portfolio leverage levels. I simulate a panel of 1,000
firms, and choose parameter values for the system above such that the simulated data most
closely resembles the actual data points by minimizing the sum of squared deviations:

min Yy Y~ (PFlev™ — PFlevt)? (75)
7 t

where ¢ indexes whether a data point belongs to a high or low leverage portfolio at time ¢,
and the parameter vector ® = {02, ¢o, p1,02}. The parameters are, respectively: the cross-
sectional error variance in (73), as well as the intercept, slope and error variance for the AR(1)
process governing target leverage in (74). The estimates are as follows:

©o Y1 O¢ Oy
Estimate 0.021 0.930 0.066 0.080
Std. Error (0.012) (0.009) (0.003) (0.010)
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Figure 5: Sample Mismeasured Target Leverage Paths.
I first simulate a true target based on the parameters recovered via (18): ® = {pg =

0.021, 1 = 0.93, 0. = 0.066, o, = 0.080}.

—

lev*

@

aq

[\

The mismeasured target is then given by

ag + arlev + e (76)

(1 - a1)E(lev) (77)
1

1+a

Var(@)ﬁ (78)

The four panels show sample leverage paths for different levels of the noise-to-signal ratio

o2

a = —%. The true target is the same in all panels.
UIE
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Figure 6: Implied Measurement Error from Residual-Based Sorts.
I recover the implied ratio of measurement noise to variation in the true explanatory variable
x. Previously, I obtained the parameter values governing the dynamics of the true target
by calibrating simulated leverage portfolios to those obtained by the Lemmon et al. (2008)
leverage-based sorts. Knowing the true target then allows the mismeasured target lev* to be
backed out via

lev: = ag+ aqlev +e (79)
ap = (1—ay)E(lev) (80)
1
“T g +a
2 _ a
0-6 = VCLT(ZGU)W (8].)

The red crosses correspond to actual portfolio leverage levels. I simulate a panel of 1,000
firms, and choose the noise-to-signal ratio a = U% /o2 for the system above such that the
simulated data most closely resembles the actual data points by minimizing the sum of squared
deviations:

min Y > (PFlevi™ — PFlevit)’ (82)
a
it
where ¢ indexes whether a data point belongs to a high or low leverage portfolio at time ¢. The

minimum of the objective function is reached at a = 1.42 (std. error = 0.12). The resulting
fit is shown above.
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Figure 7: Residual-Sorted Leverage Portfolios at Different Implied Levels of Measurement
Error.

I simulate the set of equations in Figure 6 for different values of the noise-to-signal ratio
a= 0727 /o2. Firms are sorted into portfolios based on residuals.
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Figure 8: Average Leverage of Portfolios Sorted on Simulated ‘Actual’ and ‘Unexpected’
Leverage with 7td Measurement Error.

Panel A shows the evolution of the high and low leverage portfolios, when firms are sorted
into portfolios based on simulated leverage. Firms are simulated using the parameters from
Table 2, which are obtained by the calibration described in Sections 4.3. Every period, simu-
lated firms are sorted into either a high- or low-leverage portfolio, whose composition is held
constant for 20 time periods. The figure shows the average leverage of the simulated portfolios
in each year (solid and dashed lines). The simulated portfolios closely resemble the real data,
depicted by the red crosses.

Panel B shows the results of doing the residual-based sort: leverage is regressed on mis-
measured profitability, tangibility, market-to-book and industry leverage, and firms are then
sorted into portfolios on the basis of the regression residual. The portfolio leverage levels in
years 5 and onward again closely resemble the real data, while the initial dispersion is lower
than in the data.
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Tables

Variable Mean Minimum Median Maximum Std Dev

lev 0.27 0.00 0.24 1.00 0.21
profit 0.05 -2.37 0.11 0.44 0.32
tang 0.34 0.00 0.28 0.93 0.25
MB 1.73 0.18 1.00 21.21 2.45

LnSize  4.18 -1.47 4.03 10.45 2.38

Table 1: Summary Statistics.
Summary statistics over the sample period 1965-2003 for nonfinancial firms on Com-
pustat. Variable definitions are provided in Appendix A.
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Variable Parameter Estimate Std. Error

Profitability 01 0.832 0.013
Oc 0.194 0.007
oy 0.105 0.006
Tangibility 01 0.936 0.011
Oc 0.090 0.011
oy 0.038 0.009
Market-to-Book 01 0.931 0.011
Oc 0.603 0.059
o 1.476 0.067
Industry Leverage ¢ 0.891 0.009
Oc 0.039 0.010
o 0.012 0.004
Cross-sectional Bo 0.129 0.014
Parameters Bprrof -0.070 0.016
BTang 0.115 0.011
BuB -0.105 0.007
BrndLev 0.859 0.031
Ou 0.082 0.005

Table 2: Estimated Structural Parameters, with iid Measurement Error.
This table lists the structural parameters governing the time series and cross-sectional prop-
erties of the latent variables profitability, tangibility, market-to-book, and industry leverage
in the four-variable calibration modeled via equations (26) through (32), as well as standard
errors. The parameter values are found by minimizing the squared distance between simulated
sample moments and actual data moments. The chosen moments are described in Section
4.3.1.
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Variable Parameter Data Value Sim. Value | Struc. Value
Profitability 4 0.009 0.009 0.007
o} 0.775 0.764 0.832
o2 0.132 0.134 0.123
Tangibility o» 0.017 0.031 0.023
o} 0.952 0.916 0.936
o2 0.057 0.067 0.066
Market-to-Book o» 0.616 0.616 0.092
o} 0.534 0.530 0.931
o2 4.895 4.895 2,717
Industry Leverage ¢ 0.028 0.036 0.033
o} 0.908 0.879 0.891
o2 0.007 0.008 0.008
Cross-sectional B; 0.013 0.077 0.129
Parameters Bbrof -0.066 -0.063 -0.070
BT ang 0.099 0.112 0.115
Birs -0.006 -0.058 -0.105
Bl ndLew 0.835 0.834 0.859
Leverage Ot 0.034 0.044 0.044

Table 3: Actual and Simulated Moments, with iid Measurement Error.
This table lists actual data moments in the “Data Value” column, their simulated counter-
parts (excluding the portfolio leverage levels) in the “Sim. Value” column, and the latent
structural values in the “Struc. Value” column. The simulated moments are computed from
simulated mismeasured variables using the estimated structural parameters from Table 2, and
are described in Section 4.3.1. The latent structural values are obtained with the estimated
structural parameter values from Table 2, and are included here again for ease of comparison.
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or/oZ allol.
Profitability 0.090  0.083
Tangibility 0.021  0.021
Market-to-Book 0.802  0.445
Industry Leverage 0.018  0.018

Table 4: Measurement Error Ratio with ¢¢d Measurement Error.
For each explanatory variable, column (1) shows estimates of the ratio of measurement noise
a% to variance in the latent explanatory variable o2, while column (2) shows the ratio of mea-
surement noise 0727 to total variance o2.. The total variance is the variance of the mismeasured
observed variable, and thus includes the measurement error variance. The values shown are
computed with the structural parameter values in Table 2, which minimize the calibration’s
sum of squared errors.

46



